λͺ©μ°¨
- Fundamentals of Hypothesis Testing: One-Sample Tests
- κ°μ
- INTRO
- One-Tail Tests μ’ λ₯
- Example: Upper-Tail t Test for Mean (π unknown)
π, π€·ββοΈ , π, π
μ΄ μμ΄μ½λ€μ λλ₯΄μλ©΄ μ λ΅, κ°λ
λΆκ° μ€λͺ
μ λ³΄μ€ μ μμ΅λλ€:)
Fundamentals of Hypothesis Testing: One-Sample Tests
μ¦, κ°μ€κ²μ¦μ΄λ€.
testλΌλ μλ©μ΄ λ€μ΄κ°λ€λ κ²μ μ΄ μΆμ μ κ²°κ³Όλ‘ μΈν μμ¬κ²°μ κΉμ§ νλ€λ κ²μ΄λ€.
One-Sample Tests: λ°μ΄ν° μΈνΈκ° νλμ΄λ€.
- One-Sample Tests: μ°λ¦¬λλΌ μ¬λμ μμ΄νκ° 100 μ΄μμ΄λ€ -> μ°λ¦¬λλΌ μ¬λμ μμ΄νλΌλ νλμ λ°μ΄ν° μΈνΈκ° νμνλ€
- Two-Sample Tests: μ°λ¦¬λλΌμ μΌλ³Έμ μμ΄νλ₯Ό λΉκ΅ν΄λ³΄λ©΄ μ°λ¦¬λλΌκ° λ λλ€ -> μ°λ¦¬λλΌ μμ΄μΏ λ°μ΄ν° μΈνΈμ μΌλ³Έμ μμ΄ν λ°μ΄ν°μΈνΈκ° νμνλ€. μ¦, λΉκ΅, λ³ν κ²μ¦μ λ§μ΄ μ°μΈλ€.
κ°μ
μλμ λμμ νλμ© μμΈν μμλ³Ό κ²μ΄λ€.
- Ο known: Fundamentals of Hypothesis Testing Methodology
- Ο Unknown: t-Test of Hypothesis for the Mean
- One-Tail Tests(λμ μ 체μ μ μ©)
- Population Proportion: Z-Test of Hypothesis for the Proportion
- Potential Hypothesis Testing Pitfalls and Ethical Issues(μΆκ°)
INTRO
[One-Tail Tests(λμ μ 체μ μ μ©)]
- two-tail test: μ§κΈκΉμ§ λ°°μ΄κ²μΌλ‘ μ΄κ² λ§λ μλλμ λ¬Έμ
- one-tail test: μ΄κ±°λ³΄λ€ μλ μ΄κ±°λ³΄λ€ ν¬λμ λ¬Έμ
One-Tail Tests μ’ λ₯
- Lower-Tail Tests
- Upper-Tail Tests
Lower-Tail Tests
[κ°μ€μ λ°©ν₯]
alternative hypothesis \(H_1\) is focused on the lower tail
\(H_0\), \(H_1\) λ μμ보기
(EX)
- \(H_0 : ΞΌ\) \(>=\) \(3\) β‘οΈ = μ΄ λ€μ΄κ°λ μ΄μ λ νμ¬μ κ²μ acceptνκΈ° λλ¬Έμ΄λ€.
- \(H_1 : ΞΌ < 3\).
[critical value]
There is only one critical value, since the rejection area is in only one tail
λν aκ°μ΄ a/2κ° (two-tail test) μ΄ μλ aκ·Έ μ체 μ΄λ€.
Upper-Tail Tests
[κ°μ€μ λ°©ν₯]
alternative hypothesis \(H_1\) is focused on the upper tail
\(H_0\), \(H_1\) λ μμ보기
(EX)
- \(H_0 : ΞΌ\) \(<=\) \(3\)
- \(H_1 : ΞΌ > 3\).
[critical value]
There is only one critical value, since the rejection area is in only one tail
λν aκ°μ΄ a/2κ° (two-tail test) μ΄ μλ aκ·Έ μ체 μ΄λ€.
Example: Upper-Tail t Test for Mean (π unknown)
κ·ΈλΌ μ΄μ μμ κ°λ
μ μ΄μ©ν΄ λ¬Έμ λ₯Ό νμ΄λ³΄λ©° μ΄ν΄λ₯Ό ν΄λ³΄μ!
κ·ΈλΌ λ¬΄μ¨ κ°λ
μΈμ§ λ μλΏμ κ²μ΄λ€.
λ¨Όμ λ¬Έμ μ μΉμν΄μ§κΈ° μν΄ π unknownμ two-tail λ²μ μ 볡μ΅νκ³ μ€μ!
PROBLEM
A phone industry manager thinks that customer monthly cell phone bills have increased, and now average over $52 per month. The company wishes to test this claim. (Assume a normal population)
β‘οΈ now average over $52 per month: 52보λ€λ λ§λ€ μ΄λ―λ‘ one-tail μ΄λΌλ κ²μ μ μ μλ€.
[Form hypothesis test:]
- \(H_0 : ΞΌ\) \(<=\) \(52\)
- the mean is not over $52 per month
- \(H_1 : ΞΌ > 52\).
- the mean is greater than $52 per month
SOLVE 1
1) Find Rejection Region
- Suppose that a = 0.10 is chosen for this test and n = 25.
- Find the rejection region:
2) Test Statistic
Obtain sample and compute the test statistic
Suppose a sample is taken with the following results:
- n = 25, = 53.1, and S = 10
- Then the test statistic is
3) Decision
Reach a decision and interpret the result:
β‘οΈ Do not reject \(H_0\) since \(t_{STAT}\) = 0.55 < 1.318
- there is not sufficient evidence that the mean bill is over $52
SOLVE 2: p-value
Calculate the p-value and compare to a
β‘οΈ Do not reject \(H_0\) since p-value = .2937 > a = .10
- there is not sufficient evidence that the mean bill is over $52