Table of Contents
본 포스팅은 CS231N을 한국어로 정리한 포스팅입니다
[21] Lecture 1: Introduction
[23] Lecture 3: Regularization and Optimization
Regularization
Optimization Regularization
[24] Lecture 4: Neural Networks and Backpropagation
[25] Lecture 5: Convolutional Neural Networks
- History of CNN
- Convolutional Neural NetworK
- CNN
- CNN의 수행 개요
- Spatial dimension
- The brain/neuron view of CONV Layer
- Pooling Layer
- Fully Connected Layer (FC layer)
[26] Lecture 6: Training Neural Networks Part I
- Overview
- Activation Function
- Data Preprocessing
- Weight Initialization
- Batch Normalization
- Babysitting the Learning Process
- Hyperparameter Optimization